Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
1.
Sci Rep ; 14(1): 8470, 2024 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-38605046

RESUMO

The nasal microbiota is a key contributor to animal health, and characterizing the nasal microbiota composition is an important step towards elucidating the role of its different members. Efforts to characterize the nasal microbiota composition of domestic pigs and other farm animals frequently report the presence of bacteria that are typically found in the gut, including many anaerobes from the Bacteroidales and Clostridiales orders. However, the in vivo role of these gut-microbiota associated taxa is currently unclear. Here, we tackled this issue by examining the prevalence, origin, and activity of these taxa in the nasal microbiota of piglets. First, analysis of the nasal microbiota of farm piglets sampled in this study, as well as various publicly available data sets, revealed that gut-microbiota associated taxa indeed constitute a substantial fraction of the pig nasal microbiota that is highly variable across individual animals. Second, comparison of herd-matched nasal and rectal samples at amplicon sequencing variant (ASV) level showed that these taxa are largely shared in the nasal and rectal microbiota, suggesting a common origin driven presumably by the transfer of fecal matter. Third, surgical sampling of the inner nasal tract showed that gut-microbiota associated taxa are found throughout the nasal cavity, indicating that these taxa do not stem from contaminations introduced during sampling with conventional nasal swabs. Finally, analysis of cDNA from the 16S rRNA gene in these nasal samples indicated that gut-microbiota associated taxa are indeed active in the pig nasal cavity. This study shows that gut-microbiota associated taxa are not only present, but also active, in the nasal cavity of domestic pigs, and paves the way for future efforts to elucidate the function of these taxa within the nasal microbiota.


Assuntos
Microbiota , Cavidade Nasal , Suínos , Animais , Cavidade Nasal/microbiologia , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/análise , Nariz/microbiologia , Microbiota/genética , Sus scrofa/genética
2.
Dis Aquat Organ ; 157: 31-43, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38299848

RESUMO

Infections by Erysipelothrix rhusiopathiae occur in domestic animals and cause the disease known as 'erysipelas'. The ubiquity of Erysipelothrix spp. makes infection possible in a wide range of vertebrates and invertebrates. Cetaceans are highly susceptible to erysipelas, especially those under human care. The number of cases documented in wild cetaceans is low, the pathogenesis is incompletely understood, and the full spectrum of lesions is not well defined. The possible serotypes and species of the genus that can cause disease are unknown. In October 2022, a common bottlenose dolphin Tursiops truncatus stranded in Vilassar de Mar (Catalonia) showing skin lesions consistent with 'diamond skin disease', a characteristic lesion of erysipelas shared by swine and cetaceans. Necropsy was performed following standardized procedures, and multiple samples were taken for histopathology and bacteriology. Erysipelothrix sp. grew in pure culture in many tissue samples. Genetic characterization by multi-locus sequence analysis identified the species as E. rhusiopathiae. Histologically, the main lesions were an intense suppurative vasculitis of leptomeningeal arteries and veins with abundant intramural Gram-positive bacilli and meningeal hemorrhages. Meningeal lesions were considered the cause of death. The affected skin showed moderate suppurative dermatitis. Herein we document a case of erysipelas in a Mediterranean common bottlenose dolphin with unusual lesions in the leptomeningeal vessels and marked skin tropism. To our knowledge, this is the first case of severe brain involvement in erysipelas in a cetacean. We also provide a review of available cases in wild cetaceans, to highlight the characteristics of the disease and improve future diagnosis.


Assuntos
Golfinho Nariz-de-Garrafa , Erisipela , Infecções por Erysipelothrix , Erysipelothrix , Animais , Encéfalo , Erisipela/veterinária , Infecções por Erysipelothrix/microbiologia
3.
Reg Environ Change ; 23(4): 156, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37970329

RESUMO

Farming in Europe has been the scene of several important socio-economic and environmental developments and crises throughout the last century. Therefore, an understanding of the historical driving forces of farm change helps identifying potentials for navigating future pathways of agricultural development. However, long-term driving forces have so far been studied, e.g. in anecdotal local case studies or in systematic literature reviews, which often lack context dependency. In this study, we bridged local and continental scales by conducting 123 oral history interviews (OHIs) with elderly farmers across 13 study sites in 10 European countries. We applied a driving forces framework to systematically analyse the OHIs. We find that the most prevalent driving forces were the introduction of new technologies, developments in agricultural markets that pushed farmers for farm size enlargement and technological optimisation, agricultural policies, but also cultural aspects such as cooperation and intergenerational arrangements. However, we find considerable heterogeneity in the specific influence of individual driving forces across the study sites, implying that generic assumptions about the dynamics and impacts of European agricultural change drivers hold limited explanatory power on the local scale. Our results suggest that site-specific factors and their historical development will need to be considered when addressing the future of agriculture in Europe in a scientific or policy context. Supplementary Information: The online version contains supplementary material available at 10.1007/s10113-023-02150-y.

4.
Proc Natl Acad Sci U S A ; 120(47): e2307773120, 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-37963246

RESUMO

The expansion and intensification of livestock production is predicted to promote the emergence of pathogens. As pathogens sometimes jump between species, this can affect the health of humans as well as livestock. Here, we investigate how livestock microbiota can act as a source of these emerging pathogens through analysis of Streptococcus suis, a ubiquitous component of the respiratory microbiota of pigs that is also a major cause of disease on pig farms and an important zoonotic pathogen. Combining molecular dating, phylogeography, and comparative genomic analyses of a large collection of isolates, we find that several pathogenic lineages of S. suis emerged in the 19th and 20th centuries, during an early period of growth in pig farming. These lineages have since spread between countries and continents, mirroring trade in live pigs. They are distinguished by the presence of three genomic islands with putative roles in metabolism and cell adhesion, and an ongoing reduction in genome size, which may reflect their recent shift to a more pathogenic ecology. Reconstructions of the evolutionary histories of these islands reveal constraints on pathogen emergence that could inform control strategies, with pathogenic lineages consistently emerging from one subpopulation of S. suis and acquiring genes through horizontal transfer from other pathogenic lineages. These results shed light on the capacity of the microbiota to rapidly evolve to exploit changes in their host population and suggest that the impact of changes in farming on the pathogenicity and zoonotic potential of S. suis is yet to be fully realized.


Assuntos
Infecções Estreptocócicas , Streptococcus suis , Doenças dos Suínos , Animais , Humanos , Suínos , Infecções Estreptocócicas/veterinária , Fazendas , Doenças dos Suínos/epidemiologia , Virulência/genética , Streptococcus suis/genética , Gado
5.
Vet Res ; 54(1): 112, 2023 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-38001497

RESUMO

The nasal microbiota plays an important role in animal health and the use of antibiotics is a major factor that influences its composition. Here, we studied the consequences of an intensive antibiotic treatment, applied to sows and/or their offspring, on the piglets' nasal microbiota. Four pregnant sows were treated with crystalline ceftiofur and tulathromycin (CTsows) while two other sows received only crystalline ceftiofur (Csows). Sow treatments were performed at D-4 (four days pre-farrowing), D3, D10 and D17 for ceftiofur and D-3, D4 and D11 for tulathromycin. Half of the piglets born to CTsows were treated at D1 with ceftiofur. Nasal swabs were taken from piglets at 22-24 days of age and bacterial load and nasal microbiota composition were defined by 16 s rRNA gene qPCR and amplicon sequencing. Antibiotic treatment of sows reduced their nasal bacterial load, as well as in their offspring, indicating a reduced bacterial transmission from the dams. In addition, nasal microbiota composition of the piglets exhibited signs of dysbiosis, showing unusual taxa. The addition of tulathromycin to the ceftiofur treatment seemed to enhance the deleterious effect on the microbiota diversity by diminishing some bacteria commonly found in the piglets' nasal cavity, such as Glaesserella, Streptococcus, Prevotella, Staphylococcus and several members of the Ruminococcaceae and Lachnospiraceae families. On the other hand, the additional treatment of piglets with ceftiofur resulted in no further effect beyond the treatment of the sows. Altogether, these results suggest that intensive antibiotic treatments of sows, especially the double antibiotic treatment, disrupt the nasal microbiota of their offspring and highlight the importance of sow-to-piglet microbiota transmission.


Assuntos
Microbiota , Humanos , Gravidez , Feminino , Animais , Suínos , Animais Recém-Nascidos , Bactérias , Antibacterianos/farmacologia , Lactação
6.
Transl Anim Sci ; 7(1): txad126, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38023423

RESUMO

Streptococcus suis (S. suis) is an endemic zoonotic pathogen still lacking adequate prevention in pigs. The present case study looked back to the occurrence and consequences of S. suis outbreaks in our swine research facilities in search of new metabolic and physiological insight. From a series of outbreaks, a dataset was created including 56 pigs sampled during disease detection based on clinical signs. Pigs suspected with S. suis infection were defined as diseased (n = 28) and included pigs defined as neurologically diseased (n = 20) when severe neurological signs (central nervous system dysfunctions, i.e., opisthotonos, ataxia, and generalized tremor) were observed. Another set of 28 pigs included respective pen mates from each case and were defined as control. Representative deaths were confirmed to be caused by S. suis. Tonsillar swabs were collected and analyzed by quantitative polymerase chain reaction (qPCR) for total bacteria, total S. suis, and S. suis serotypes (SS) 2 (and/or 1/2) and 9. Blood and sera were analyzed to quantify blood gases, minerals, and S. suis reactive immunoglobulins against current isolates. Data collected included litter sibling associations, birth and weaning body weight (BW), and average daily gain (ADG) 7 d after the disease detection. In general, the disease increased pH, sO2 and the incidence of alkalosis, but reduced pCO2, glucose, Ca, P, Mg, K, and Na in blood/serum compared to control. The SS2 (and/or SS1/2) prevalence was significantly (P < 0.05) increased in neurologically diseased pigs and its relative abundance tended (P < 0.10) to increase in tonsils. In contrast, the relative abundance of total S. suis was lower (P > 0.05) in diseased pigs than control pigs. Levels of S. suis reactive IgG2 were lower, but IgM were higher (P < 0.03) in neurologically affected pigs compared to control. Furthermore, there was an increased proportion of sibling pigs that were diseased compared to control. In conclusion, our results evidence that naturally affected pigs were associated to average performing pigs without any predisease trait to highlight but a sow/litter effect. Besides, neurologically affected pigs had increased S. suis (SS2 and/or 1/2) prevalence and relative abundance, a respiratory alkalosis profile, and mineral loss.

7.
Anim Microbiome ; 5(1): 53, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37864263

RESUMO

BACKGROUND: The nasal microbiota of the piglet is a reservoir for opportunistic pathogens that can cause polyserositis, such as Glaesserella parasuis, Mycoplasma hyorhinis or Streptococcus suis. Antibiotic treatment is a strategy to control these diseases, but it has a detrimental effect on the microbiota. We followed the piglets of 60 sows from birth to 8 weeks of age, to study the effect of ceftiofur on the nasal microbiota and the colonization by pathogens when the treatment was administered to sows or their litters. We also aimed to revert the effect of the antibiotic on the nasal microbiota by the inoculation at birth of nasal colonizers selected from healthy piglets. Nasal swabs were collected at birth, and at 7, 15, 21 and 49 days of age, and were used for pathogen detection by PCR and bacterial culture, 16S rRNA amplicon sequencing and whole shotgun metagenomics. Weights, clinical signs and production parameters were also recorded during the study. RESULTS: The composition of the nasal microbiota of piglets changed over time, with a clear increment of Clostridiales at the end of nursery. The administration of ceftiofur induced an unexpected temporary increase in alpha diversity at day 7 mainly due to colonization by environmental taxa. Ceftiofur had a longer impact on the nasal microbiota of piglets when administered to their sows before farrowing than directly to them. This effect was partially reverted by the inoculation of nasal colonizers to newborn piglets and was accompanied by a reduction in the number of animals showing clinical signs (mainly lameness). Both interventions altered the colonization pattern of different strains of the above pathogens. In addition, the prevalence of resistance genes increased over time in all the groups but was significantly higher at weaning when the antibiotic was administered to the sows. Also, ceftiofur treatment induced the selection of more beta-lactams resistance genes when it was administered directly to the piglets. CONCLUSIONS: This study shed light on the effect of the ceftiofur treatment on the piglet nasal microbiota over time and demonstrated for the first time the possibility of modifying the piglets' nasal microbiota by inoculating natural colonizers of the upper respiratory tract.

8.
BMC Vet Res ; 19(1): 135, 2023 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-37641044

RESUMO

BACKGROUND: Glaesserella parasuis is the causative agent of Glässer's disease in pigs. Serotyping is the most common method used to type G. parasuis isolates. However, the high number of non-typables (NT) and low discriminatory power make serotyping problematic. In this study, 218 field clinical isolates and 15 G. parasuis reference strains were whole-genome sequenced (WGS). Multilocus sequence types (MLST), serotypes, core-genome phylogeny, antimicrobial resistance (AMR) genes, and putative virulence gene information was extracted. RESULTS: In silico WGS serotyping identified 11 of 15 serotypes. The most frequently detected serotypes were 7, 13, 4, and 2. MLST identified 72 sequence types (STs), of which 66 were novel. The most predominant ST was ST454. Core-genome phylogeny depicted 3 primary lineages (LI, LII, and LIII), with LIIIA sublineage isolates lacking all vtaA genes, based on the structure of the phylogenetic tree and the number of virulence genes. At least one group 1 vtaA virulence genes were observed in most isolates (97.2%), except for serotype 8 (ST299 and ST406), 15 (ST408 and ST552) and NT (ST448). A few group 1 vtaA genes were significantly associated with certain serotypes or STs. The putative virulence gene lsgB, was detected in 8.3% of the isolates which were predominantly of serotype 5/12. While most isolates carried the bcr, ksgA, and bacA genes, the following antimicrobial resistant genes were detected in lower frequency;  blaZ (6.9%), tetM (3.7%), spc (3.7%), tetB (2.8%), bla-ROB-1 (1.8%), ermA (1.8%), strA (1.4%), qnrB (0.5%), and aph3''Ia (0.5%).   CONCLUSION: This study showed the use of WGS to type G. parasuis isolates and can be considered an alternative to the more labor-intensive and traditional serotyping and standard MLST. Core-genome phylogeny provided the best strain discrimination. These findings will lead to a better understanding of the molecular epidemiology and virulence in G. parasuis that can be applied to the future development of diagnostic tools, autogenous vaccines, evaluation of antibiotic use, prevention, and disease control.


Assuntos
Haemophilus parasuis , Animais , Suínos , Tipagem de Sequências Multilocus/veterinária , Filogenia , Sorogrupo , Sorotipagem/veterinária , Haemophilus parasuis/genética , América do Norte
9.
Vet Rec ; 193(5): e3056, 2023 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-37269537

RESUMO

BACKGROUND: Streptococcus suis can cause meningitis, polyarthritis and acute death in piglets. However, the risk factors associated with S. suis infection remain incompletely understood. Therefore, a longitudinal study was carried out, in which six batches from two Spanish pig farms with S. suis problems were repeatedly examined to determine possible risk factors. METHODS: A prospective case-control study was conducted, and potential risk factors were evaluated using mixed-effects logistic regression models. The explanatory variables included: (a) concomitant pathogens; (b) biomarkers associated with stress, inflammation and oxidative status; (c) farm environmental factors; and (d) parity and S. suis presence in sows. Three models were built to study the effect of these variables, including two to assess the risk factors involved in the subsequent development of disease. RESULTS: Risk factors for S. suis-associated disease included porcine reproductive and respiratory syndrome virus co-infection at weaning (odds ratio [OR] = 6.69), sow parity (OR = 0.71), haptoglobin level before weaning (OR = 1.01), relative humidity (OR = 1.11) and temperature (OR = 0.13). LIMITATIONS: Laboratory diagnosis was done at the batch level, with individual diagnosis based on clinical signs only. CONCLUSIONS: This study confirms the multifactorial nature of S. suis-associated disease, with both environmental factors and factors related to the host involved in disease development. Controlling these factors may, therefore, help prevent the appearance of disease.


Assuntos
Infecções Estreptocócicas , Streptococcus suis , Doenças dos Suínos , Gravidez , Animais , Suínos , Feminino , Doenças dos Suínos/epidemiologia , Fazendas , Espanha/epidemiologia , Estudos Longitudinais , Estudos de Casos e Controles , Fatores de Risco , Infecções Estreptocócicas/epidemiologia , Infecções Estreptocócicas/veterinária
10.
Vaccine X ; 14: 100330, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37361051

RESUMO

Glaesserella parasuis is a Gram-negative bacterium that colonizes the upper airways of swine, capable of causing a systemic infection called Glässer's disease. This disease is more frequent in young post-weaning piglets. Current treatments against G. parasuis infection are based on the use of antimicrobials or inactivated vaccines, which promote limited cross-protection against different serovars. For this reason, there is an interest in developing novel subunit vaccines with the capacity to confer effective protection against different virulent strains. Herein, we characterize the immunogenicity and the potential benefits of neonatal immunization with two different vaccine formulations based on the F4 polypeptide, a conserved immunogenic protein fragment from the virulence-associated trimeric autotransporters of virulent G. parasuis strains. With this purpose, we immunized two groups of piglets with F4 combined with cationic adjuvant CAF®01 or cyclic dinucleotide CDA. Piglets immunized with a commercial bacterin and non-immunized animals served as control groups. The vaccinated piglets received two doses of vaccine, at 14 days old and 21 days later. The immune response induced against the F4 polypeptide varied depending on the adjuvant used. Piglets vaccinated with the F4+CDA vaccine developed specific anti-F4 IgGs, biased towards the induction of IgG1 responses, whereas no anti-F4 IgGs were de novo induced after immunization with the CAF®01 vaccine. Piglets immunized with both formulations displayed balanced memory T-cell responses, evidenced upon in vitro re-stimulation of peripheral blood mononuclear cells with F4. Interestingly, pigs immunized with F4+CAF®01 controlled more efficiently a natural nasal colonization by a virulent serovar 4 G. parasuis that spontaneously occurred during the experimental procedure. According to the results, the immunogenicity and the protection afforded by F4 depend on the adjuvant used. F4 may represent a candidate to consider for a Glässer's disease vaccine and could contribute to a better understanding of the mechanisms involved in protection against virulent G. parasuis colonization.

11.
Vet Sci ; 9(9)2022 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-36136679

RESUMO

The microbiota plays an important role in the development of diarrhea in pre-weaned calves. The characterization of the fecal microbiota in health and disease can be critical to unravel the bacterial dynamics associated with diarrhea and help with its prevention and control. In this study, we aimed to detect changes in the fecal microbiota of calves that experienced early-life diarrhea episodes. Fecal samples were taken from calves remaining healthy and calves with an episode of diarrhea during the study. We sampled at arrival (12 days of age) and after one and two months of life; also, at the time of the diarrhea episode for the diarrheic calves (day 17). Samples were processed to extract total DNA, submitted to 16S rRNA gene sequencing, and bioinformatically analyzed to infer the bacterial populations. Microbiota changes through time were reported for both groups. However, we detected an earlier stabilization in the healthy group. Moreover, we detected changes within low abundant taxa that may play a role in the subsequent health status of the animals. The fecal microbiota of healthy and diarrheic calves showed different dynamics in the diversity through time that may be the reflections of the variations within low-abundant taxa.

12.
Animals (Basel) ; 12(9)2022 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-35565502

RESUMO

Antimicrobial resistance is a global threat that is worryingly rising in the livestock sector. Among the proposed strategies, immunostimulant development appears an interesting approach to increase animal resilience at critical production points. The use of nanoparticles based on cytokine aggregates, called inclusion bodies (IBs), has been demonstrated as a new source of immunostimulants in aquaculture. Aiming to go a step further, the objective of this study was to produce cytokine nanoparticles using a food-grade microorganism and to test their applicability to stimulate intestinal mucosa in swine. Four cytokines (IL-1ß, IL-6, IL-8, and TNF-α) involved in inflammatory response were produced recombinantly in Lactococcus lactis in the form of protein nanoparticles (IBs). They were able to stimulate inflammatory responses in a porcine enterocyte cell line (IPEC-J2) and alveolar macrophages, maintaining high stability at low pH and high temperature. In addition, an in vivo assay was conducted involving 20 piglets housed individually as a preliminary exploration of the potential effects of IL-1ß nanoparticles in piglet intestinal mucosa after a 7 d oral administration. The treated animals tended to have greater levels of TNF-α in the blood, indicating that the tested dose of nanoparticles tended to generate an inflammatory response in the animals. Whether this response is sufficient to increase animal resilience needs further evaluation.

13.
Sci Rep ; 12(1): 3357, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35233006

RESUMO

Glaesserella parasuis is the etiological agent of Glässer's disease, a common pathology in the pork industry with higher prevalence in the postweaning period. Vaccination is one of the strategies to control this disease. Here, we investigated the effect that sow vaccination against virulent strains of G. parasuis had in the nasal microbiota of their offspring. Nasal swabs from fifteen days-old piglets from vaccinated (vs-P, n = 11) and unvaccinated sows (cs-P, n = 11) were obtained and DNA was extracted for 16S amplicon sequencing. Microbiota composition was different, with lower diversity in vs-P, and a strong clustering of the groups in beta diversity analysis. Among the 1509 sequences associated to either study group, all the sequences classified as G. parasuis (10 ASVs) had lower relative abundance in the vs-P group. A list of 32 inferred metabolic pathways were statistically different between groups. A distinctive structure of the two microbial networks was detected, with modules in the cs-P not conserved in the vs-P network. In conclusion, vaccination of the sows had a large effect in the microbiota composition of their offspring that went beyond the effect on the targeted pathogen. The mechanisms underneath these changes may include alteration of the microbiota network due to the elimination of the targeted pathogen and/or immunological changes.


Assuntos
Infecções por Haemophilus , Haemophilus parasuis , Microbiota , Doenças dos Suínos , Animais , Feminino , Infecções por Haemophilus/prevenção & controle , Infecções por Haemophilus/veterinária , Haemophilus parasuis/genética , Suínos , Doenças dos Suínos/epidemiologia , Vacinação/veterinária
14.
Vet Res ; 52(1): 145, 2021 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-34924012

RESUMO

Streptococcus suis is a zoonotic pathogen of swine involved in arthritis, polyserositis, and meningitis. Colonization of piglets by S. suis is very common and occurs early in life. The clinical outcome of infection is influenced by the virulence of the S. suis strains and the immunity of the animals. Here, the role of innate immunity was studied in cesarean-derived colostrum-deprived piglets inoculated intranasally with either virulent S. suis strain 10 (S10) or non-virulent S. suis strain T15. Colonization of the inoculated piglets was confirmed at the end of the study by PCR and immunohistochemistry. Fever (≥40.5 °C) was more prevalent in piglets inoculated with S10 compared to T15 at 4 h after inoculation. During the 3 days of monitoring, no other major clinical signs were detected. Accordingly, only small changes in transcription of genes associated with the antibacterial innate immune response were observed at systemic sites, with S10 inducing an earlier response than T15 in blood. Local inflammatory response to the inoculation, evaluated by transcriptional analysis of selected genes in nasal swabs, was more sustained in piglets inoculated with the virulent S10, as demonstrated by transcription of inflammation-related genes, such as IL1B, IL1A, and IRF7. In contrast, most of the gene expression changes in trachea, lungs, and associated lymph nodes were observed in response to the non-virulent T15 strain. Thus, S. suis colonization in the absence of systemic infection induces an innate immune response in piglets that appears to be related to the virulence potential of the colonizing strain.


Assuntos
Imunidade Inata , Infecções Estreptocócicas , Streptococcus suis , Doenças dos Suínos , Virulência , Animais , Imunidade Inata/imunologia , Infecções Estreptocócicas/imunologia , Infecções Estreptocócicas/veterinária , Infecções Estreptocócicas/virologia , Streptococcus suis/patogenicidade , Suínos , Doenças dos Suínos/imunologia , Doenças dos Suínos/virologia
15.
Front Med (Lausanne) ; 8: 671018, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34485325

RESUMO

Background: Haemophilus parasuis (Hps; now Glaesserella parasuis) is an infectious agent that causes severe arthritis in swines and shares sequence similarity with residues 261-273 of collagen type 2 (Coll261-273), a possible autoantigen in rheumatoid arthritis (RA). Objectives/methods: We tested the presence of Hps sequencing 16S ribosomal RNA in crevicular fluid, synovial fluids, and tissues in patients with arthritis (RA and other peripheral arthritides) and in healthy controls. Moreover, we examined the cross-recognition of Hps by Coll261-273-specific T cells in HLA-DRB1*04pos RA patients, by T-cell receptor (TCR) beta chain spectratyping and T-cell phenotyping. Results: Hps DNA was present in 57.4% of the tooth crevicular fluids of RA patients and in 31.6% of controls. Anti-Hps IgM and IgG titers were detectable and correlated with disease duration and the age of the patients. Peripheral blood mononuclear cells (PBMCs) were stimulated with Hps virulence-associated trimeric autotransporter peptide (VtaA10755-766), homologous to human Coll261-273 or co-cultured with live Hps. In both conditions, the expanded TCR repertoire overlapped with Coll261-273 and led to the production of IL-17. Discussion: We show that the DNA of an infectious agent (Hps), not previously described as pathogen in humans, is present in most patients with RA and that an Hps peptide is able to activate T cells specific for Coll261-273, likely inducing or maintaining a molecular mimicry mechanism. Conclusion: The cross-reactivity between VtaA10755-766 of a non-human infectious agent and human Coll261-273 suggests an involvement in the pathogenesis of RA. This mechanism appears emphasized in predisposed individuals, such as patients with shared epitope.

16.
Pathogens ; 10(6)2021 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-34205187

RESUMO

The nasal microbiota composition is associated with the health status of piglets. Sow-contact in early life is one of the factors influencing the microbial composition in piglets; however, its impact has never been assessed in the nasal microbiota of piglets reared in controlled environmental conditions. Nasal microbiota of weaning piglets in high-biosecurity facilities with different time of contact with their sows (no contact after farrowing, contact limited to few hours or normal contact until weaning at three weeks) was unveiled by 16S rRNA gene sequencing. Contact with sows demonstrated to be a major factor affecting the nasal microbial composition of the piglets. The nasal microbiota of piglets that had contact with sows until weaning, but were reared in high biosecurity facilities, was richer and more similar to the previously described healthy nasal microbiota from conventional farm piglets. On the other hand, the nasal communities inhabiting piglets with no or limited contact with sows was different and dominated by bacteria not commonly abundant in this body site. Furthermore, the length of sow-piglet contact was also an important variable. In addition, the piglets raised in BSL3 conditions showed an increased richness of low-abundant species in the nasal microbiota. Artificially rearing in high biosecurity facilities without the contact of sows as a source of nasal colonizers had dramatic impacts on the nasal microbiota of weaning piglets and may introduce significant bias into animal research under these conditions.

17.
Animals (Basel) ; 11(6)2021 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-34198883

RESUMO

Antimicrobial resistance (AMR) has spread worldwide due to the inappropriate use of antimicrobial drugs in human and veterinary medicine, becoming a public health problem. However, little is known about its occurrence and maintenance in wild animals, and very few studies have been carried out in ecosystems subjected to low human pressure. In our study, nasal and lung swabs were collected from hunted Pyrenean chamois (Rupicapra pyrenaica), and nasal swabs from sympatric domestic sheep were also collected. The swabs were cultured in agar plates to obtain bacterial isolates from the Pasteurellaceae family. The presence of AMR was assessed in a total of 28 Pasteurellaceae isolates from 45 Pyrenean chamois, and 9 isolates from sympatric domestic sheep found in the National Hunting Reserve of Freser-Setcases (Northeastern Pyrenees, Spain). The isolates belonged to one of the following three species: Pasteurella multocida, Mannheimia haemolytica and Bibersteinia trehalosi. Some P. multocida and M. haemolytica isolates tested positive for AMR. The statistical analysis revealed no differences between the AMR levels from chamois and domestic sheep isolates. However, one P. multocida of chamois origin presented resistance to cephalosporins and fluoroquinolones, which are antibiotics of critical importance for human health. Further studies are required to elucidate potential routes of dissemination of AMR genes in natural environments and assess any significant persistence in wildlife to design risk mitigation actions.

18.
Pathogens ; 10(5)2021 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-34069250

RESUMO

Fibrinous polyserositis in swine farming is a common pathological finding in nursery animals. The differential diagnosis of this finding should include Glaesserella parasuis (aetiological agent of Glässer's disease) and Mycoplasma hyorhinis, among others. These microorganisms are early colonizers of the upper respiratory tract of piglets. The composition of the nasal microbiota at weaning was shown to constitute a predisposing factor for the development of Glässer's disease. Here, we unravel the role of the nasal microbiota in the subsequent systemic infection by M. hyorhinis, and the similarities and differences with Glässer's disease. Nasal samples from farms with recurrent problems with polyserositis associated with M. hyorhinis (MH) or Glässer's disease (GD) were included in this study, together with healthy control farms (HC). Nasal swabs were taken from piglets in MH farms at weaning, before the onset of the clinical outbreaks, and were submitted to 16S rRNA gene amplicon sequencing (V3-V4 region). These sequences were analyzed together with sequences from similar samples previously obtained in GD and HC farms. Animals from farms with disease (MH and GD) had a nasal microbiota with lower diversity than those from the HC farms. However, the composition of the nasal microbiota of the piglets from these disease farms was different, suggesting that divergent microbiota imbalances may predispose the animals to the two systemic infections. We also found variants of the pathogens that were associated with the farms with the corresponding disease, highlighting the importance of studying the microbiome at strain-level resolution.

19.
Vaccines (Basel) ; 9(5)2021 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-34065547

RESUMO

Glaesserella (Haemophilus) parasuis, an early colonizer of the nasal cavity in piglets, is a highly heterogeneous species, comprising both commensal and virulent strains. Virulent G. parasuis strains can cause fibrinous polyserositis called Glässer's disease. Colostrum is a source of passive immunity for young piglets. When vaccinating sows, protective antibodies are transferred to their offspring through the colostrum. Here, sow vaccination was performed with a protein fragment, F4, from the outer membrane trimeric autotransporters VtaAs exclusively found in virulent G. parasuis. Piglets were allowed to suckle for 3 weeks, following which a challenge with two virulent strains of G. parasuis was performed. A group of nonvaccinated sows and their piglets were included as a control. Antibodies against F4 were confirmed using ELISA in the vaccinated sows and their offspring before the G. parasuis challenge. Compared to the control group, F4-vaccination also resulted in an increased level of serum TGF-ß both in vaccinated sows and in their offspring at early time points of life. After the challenge, a lower body temperature and a higher weight were observed in the group of piglets from vaccinated sows. One piglet from the non-vaccinated group succumbed to the infection, but no other significant differences in clinical signs were noticed. At necropsy, performed 2 weeks after the virulent challenge, the level of surfactant protein D (SP-D) in bronchoalveolar lavage was higher in the piglets from vaccinated sows. Vaccination did not inhibit the nasal colonization of the piglets by the challenge strains.

20.
Vet Res ; 52(1): 68, 2021 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-33980312

RESUMO

Glaesserella parasuis strains were characterized by serotyping PCR, vtaA virulence marker Leader Sequence (LS)-PCR, clinical significance, and geographic region. Overall, the serovars 4, 5/12, 7, 1, and 13 were the most commonly detected. Serovars of greatest clinical relevance were systemic isolates that had a higher probability of being serovar 5/12, 13, or 7. In comparison, pulmonary isolates had a higher likelihood of being serovars 2, 4, 7, or 14. Serovars 5/12 and 13 have previously been considered disease-associated, but this study agrees with other recent studies showing that serovar 7 is indeed associated with systemic G. parasuis disease. Serovar 4 strains illustrated how isolates can have varying degrees of virulence and be obtained from pulmonary, systemic, or nasal sites. Serovars 8, 9, 15, and 10 were predominantly obtained from nasal samples, which indicates a limited clinical significance of these serovars. Additionally, most internal G. parasuis isolates were classified as virulent by LS-PCR and were disease-associated isolates, including serovars 1, 2, 4, 5/12, 7, 13, and 14. Isolates from the nasal cavity, including serovars 6, 9, 10, 11, and 15, were classified as non-virulent by LS-PCR. In conclusion, the distribution of G. parasuis serovars remains constant, with few serovars representing most of the strains isolated from affected pigs. Moreover, it was confirmed that the LS-PCR can be used for G. parasuis virulence prediction of field strains worldwide.


Assuntos
Infecções por Haemophilus/veterinária , Haemophilus parasuis/genética , Doenças dos Suínos/epidemiologia , Animais , Ásia/epidemiologia , Europa (Continente)/epidemiologia , Infecções por Haemophilus/epidemiologia , Infecções por Haemophilus/microbiologia , América do Norte/epidemiologia , Reação em Cadeia da Polimerase/veterinária , Prevalência , Estudos Soroepidemiológicos , Sorotipagem/veterinária , Sus scrofa , Suínos , Doenças dos Suínos/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...